Step of Proof: connex_functionality_wrt_iff 12,41

Inference at * 1 
Iof proof for Lemma connex functionality wrt iff:



1. T : Type
2. R : TT
3. R' : TT
4. xy:TR(x,y R'(x,y)
  (xy:TR(x,y R(y,x))  (xy:TR'(x,y R'(y,x)) 
latex

 by InteriorProof ((RWH (HypC 4) 0) 
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n
CollapseTHENA ((Au),(first_nat 3:n)) (first_tok :t) inil_term))) 
latex


C1

C1:   (xy:TR'(x,y R'(y,x))  (xy:TR'(x,y R'(y,x))
C.


DefinitionsP & Q, xt(x), P  Q, P  Q, P  Q, P  Q, t  T, x(s1,s2), x:AB(x), , x(s)
Lemmasor functionality wrt iff, all functionality wrt iff, iff functionality wrt iff

origin